Temporal plasticity involved in recovery from manual dexterity deficit after motor cortex lesion in macaque monkeys.

نویسندگان

  • Yumi Murata
  • Noriyuki Higo
  • Takuya Hayashi
  • Yukio Nishimura
  • Yoko Sugiyama
  • Takao Oishi
  • Hideo Tsukada
  • Tadashi Isa
  • Hirotaka Onoe
چکیده

The question of how intensive motor training restores motor function after brain damage or stroke remains unresolved. Here we show that the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of rhesus macaque monkeys are involved in the recovery of manual dexterity after a lesion of M1. A focal lesion of the hand digit area in M1 was made by means of ibotenic acid injection. This lesion initially caused flaccid paralysis in the contralateral hand but was followed by functional recovery of hand movements, including precision grip, during the course of daily postlesion motor training. Brain imaging of regional cerebral blood flow by means of H2 (15)O-positron emission tomography revealed enhanced activity of the PMv during the early postrecovery period and increased functional connectivity within M1 during the late postrecovery period. The causal role of these areas in motor recovery was confirmed by means of pharmacological inactivation by muscimol during the different recovery periods. These findings indicate that, in both the remaining primary motor and premotor cortical areas, time-dependent plastic changes in neural activity and connectivity are involved in functional recovery from the motor deficit caused by the M1 lesion. Therefore, it is likely that the PMv, an area distant from the core of the lesion, plays an important role during the early postrecovery period, whereas the perilesional M1 contributes to functional recovery especially during the late postrecovery period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of rehabilitative training on recovery of hand motor function: A review of animal studies

Neuromotor systems have the capacity for functional recovery following damage to the central nervous system. This recovery can be enhanced by rehabilitative training. Animal studies in which artificial damage is induced in a specific region of the brain or spinal cord of rodents or monkeys have contributed to our understanding of the effects of rehabilitative training. In this article, I provid...

متن کامل

Effects of motor training on the recovery of manual dexterity after primary motor cortex lesion in macaque monkeys.

To investigate the effects of postlesion training on motor recovery, we compared the motor recovery of macaque monkeys that had received intensive motor training with those that received no training after a lesion of the primary motor cortex (M1). An ibotenic acid lesion in the M1 digit area resulted in impairment of hand function, with complete loss of digit movement. In the monkeys that had u...

متن کامل

Training-induced recovery of manual dexterity after a lesion in the motor cortex.

Cerebral injury, such as stroke, cause functional deficits; however some functions can recover with postlesion rehabilitative training. Several recent studies using rodents and monkeys have reported the effects of postlesion training on functional recovery after brain injury. We present herein an overview of recent animal experimental studies on the effects of postlesion motor training on brain...

متن کامل

Comparison of Functional Recovery of Manual Dexterity after Unilateral Spinal Cord Lesion or Motor Cortex Lesion in Adult Macaque Monkeys

In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data d...

متن کامل

Effects of unilateral motor cortex lesion on ipsilesional hand's reach and grasp performance in monkeys: relationship with recovery in the contralesional hand.

Manual dexterity, a prerogative of primates, is under the control of the corticospinal (CS) tract. Because 90-95% of CS axons decussate, it is assumed that this control is exerted essentially on the contralateral hand. Consistently, unilateral lesion of the hand representation in the motor cortex is followed by a complete loss of dexterity of the contralesional hand. During the months following...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 1  شماره 

صفحات  -

تاریخ انتشار 2015